Computer Science 308-547A Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes from the former course *Cryptography and Data Security (308-647A)* that was given by prof. Claude Crépeau at McGill University during the autumn of 1998-1999. These notes are updated and revised by Claude Crépeau.

3 Introduction

3.1 Crypto system

Definition 3.1 Let \mathcal{P} denote a finite set of messages (also called plaintexts), \mathcal{C} a finite set of ciphered texts and \mathcal{K} a finite set of keys. For each $k \in \mathcal{K}$, we associate an encryption function $e_k : \mathcal{P} \to \mathcal{C}$ and a decryption function $d_k : \mathcal{C} \to \mathcal{P}$ such that $d_k(e_k(x)) = x$, for all $x \in \mathcal{P}$. The set of e_k 's will be noted by \mathcal{E} and \mathcal{D} will designate the set of d_k 's. $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ defines a cryptosystem.

3.2 Classic simple cryptosystems

Most of the following cryptosystems will be defined over \mathbb{Z}_{26} , so to correspond with the english alphabet of 26 symbols, but they can be generalized to \mathbb{Z}_m .

3.2.1 Shift cipher

Let $\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26}$. For $0 \le k \le 25$ and $x, y \in \mathbb{Z}_{26}$ define

$$e_k(x) = x + k \bmod 26$$

and

$$d_k(y) = y - k \mod 26$$

For the particular case where k = 3, the scheme is called the **Caesar Cipher**.

3.2.2 Substitution cipher

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$. $\mathcal{K} = \{\pi | \pi \text{ is a permutation over the symbols } 0, 1, \dots, 25 \text{ of } \mathbb{Z}_{26}\}$ For $\pi \in \mathcal{K}$ and $x, y \in \mathbb{Z}_{26}$ define

$$e_{\pi}(x) = \pi(x)$$

and

$$d_{\pi}(y) = \pi^{-1}(y)$$

Note that the *shift cipher* is a special case of the *substitution cipher* in which only 26 of the possible 26! permutations are used.

3.2.3 Affine cipher

Let $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$, $\mathcal{K} = \{(a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} \mid gcd(a, 26) = 1\}.$ For $K = (a, b) \in \mathcal{K}$ and $x, y \in \mathbb{Z}_{26}$ define

$$e_K(x) = ax + b \bmod 26$$

and

$$d_K(y) = a^{-1}(y-b) \mod 26$$

The functions used are called *affine* functions, thus the name of the cryptosystem. Note that the *affine cipher* is a special case of the *substitution* cipher in which only 26 * 12 (26 values of b and 12 values of a) of the possible 26! permutations are used. Notice that if a = 1, we have the *shift cipher*.

In the *substitution cipher*, once a key is chosen, each alphabetic character is mapped to a unique alphabetic character. These are called *monoalphabetic* ciphers. These ciphers are vulnerable to attacks in which we can use the frequency of certain letters of the language in use. In the next cipher we present the well known *Vigenère cipher*, which is a *polyalphabetic* cipher.

3.2.4 Vigenère Cipher

Let $\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^m$, for some fixed $m \in \mathbb{Z}_{26}$. For $K = (k_1, k_2, \dots, k_m)$ define

$$e_K(x_1, x_2, \dots, x_m) = (x_1 + k_1, x_2 + k_2, \dots, x_m + k_m)$$

and

$$d_K(y_1, y_2, \dots, y_m) = (y_1 - k_1, y_2 - k_2, \dots, y_m - k_m).$$

All operations are performed in \mathbb{Z}_{26} .

3.2.5 Vernam's One-time pad

Let $n \ge 1$ and let $\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_2)^n$. For $K \in (\mathbb{Z}_2)^n$, define

$$e_K(x) = (x_1 + K_1, \dots, x_n + K_n) \mod 2$$

and

$$d_K(y) = (y_1 + K_1, \dots, y_n + K_n) \mod 2.$$

The famous *one-time pad* has unconditional perfect secrecy. If, when using the *Vigenère* cipher, we use a new random key for each encryption then we have perfect secrecy. This can be viewed as a generalization of the *One-time pad* from a binary to an arbitrary alphabet.

3.2.6 Hill cipher

Let *m* be a fixed integer and let $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$, $\mathcal{K} = \{m \times m \text{ invertible over } \mathbb{Z}_{26}\}$. For $K \in \mathcal{K}$, define

$$e_K(x) = x \cdot K$$

and

$$d_K(y) = y \cdot K^{-1}$$

Note that a *permutation cipher* is a special case of the *Hill cipher* in which only m! (permutation matrices) of all the possible invertible $m \times m$ matrices are used. Such a cipher is permuting blocks of m letters in a fixed reversible way.

3.3 Cryptanalysis: classes of attacks

There are 4 basic classes of attacks on a cryptosystem. In every case, the encryption-decryption scheme is known to everyone and an attacker *Oscar* is interested in recovering the plaintext corresponding to a specific ciphertext, or even more drastically, deduce the decryption key of the scheme in use. The four classes of attacks are presented in the following table:

Class	description
ciphertext-only	Oscar tries to deduce the plaintext or decryption
	key using only the ciphertext.
known plaintext	Oscar has access to a series of ciphertext-plaintext
	pairs.
chosen plaintext	Oscar is given the ciphertexts corresponding
	to the plaintexts of his choice.
chosen ciphertext	Oscar is given the plaintexts corresponding
	to the ciphertexts of his choice.

4 Authentication Codes

A message authentication code (MAC) is essentially a scheme where *Alice* may append a tag (a MAC) to a message in such a way that *Bob* may verify the tag so as to convince himself that *Alice* was in fact the one that sent the message.

In this section, we present an authentication code that is unconditionally secure. The main results in this section is from [?].

Formally, an Authentication Code is defined as follows:

Definition 4.1 Let \mathcal{M} be a finite set of messages and \mathcal{T} a finite set of authentication tags such that for each $k \in \mathcal{K}$, there is an authentication algorithm aut_k and a corresponding verification algorithm ver_k such that $aut_k : \mathcal{M} \to \mathcal{T}$ and $ver_k : \mathcal{M} \times \mathcal{T} \to \{true, false\}$ are polynomial-time computable functions and

$$ver_k(m,t) = \begin{cases} true & : if \ t = aut_k(x) \\ false & : if \ t \neq aut_k(x) \end{cases}$$

The security of an authentication code is defined in terms of probability for an adversary to predict a proper tag t corresponding to a message m he has never seen authenticated before. In the rest of this section we build authentication codes that are based on the notion of $Strongly Universal_2$ hash functions.

Definition 4.2 (Strongly Universal₂) Let H is a set of hash functions from set A to B.

H is Strongly Universal₂ if for all a_1, a_2 , distinct elements of *A*, and all b_1, b_2 , elements (not necessarily distinct) of *B*, we have

$$|\{h \in H : h(a_1) = b_1, h(a_2) = b_2\}| = |H|/|B|^2$$

Remark: An equivalent definition is the following, H is Strongly Universal₂ if for any h picked randomly (uniformly) from H we have that

- 1. $\forall_{a \in A, b \in B} Pr[h(a) = b] = 1/|B|$
- 2. $\forall_{a_1,\neq a_2\in A, b_1, b_2\in B} Pr[h(a_1) = b_1, h(a_2) = b_2] = 1/|B|^2$
- 3. $\forall_{a_1, \neq a_2 \in A, b_1, b_2 \in B} Pr[h(a_2) = b_2 | h(a_1) = b_1] = 1/|B|$

We need 1 and 3 for perfect authentication.

The definition can be generalized

Definition 4.3 (Strongly Universal_n) Let H is a set of hash functions from set A to B. H is Strongly Universal_n if for all $a_1, a_2, ..., a_n$, distinct elements of A, and all $b_1, b_2, ..., b_n$, elements (not necessarily distinct) of B, we have

$$|\{h \in H : h(a_1) = b_1, ..., h(a_n) = b_n\}| = |H|/|B|^n$$

Remark: If H is Strongly Universal_n then it is Strongly Universal_{n-1}

Example 4.1 Let A = B be a finite field. Let H be the class of polynomials of degree less than n. H is Strongly Universal_n since given any n distinct elements of A and corresponding elements of B, there is exactly one polynomial of degree less than n which interpolates through the designated pairs.

We can create an authentication system that is unbreakable with certainty p. To do this, we simply choose \mathcal{T} such that $|\mathcal{T}| \geq 1/p$ and Fto be a *Strongly Universal*₂ class of hash functions from \mathcal{M} to \mathcal{T} . Someone who sees $m \in \mathcal{M}$ and t = f(m) knows only that $f \in H'$ where $H' = \{g \in H \mid g(m) = t\}$, so then, by definition of *Strongly Universal*₂, guessing a correct function that maps an $m' \neq m \in \mathcal{M}$ happens with probability $\leq p$ since a fraction $1/|\mathcal{T}|$ of all the functions from H' agree with g(m') = t'.

The problem with this protocol is that all know Strongly Universal₂ sets are rather large (see [?] for such sets), and specifying a certain function from these sets requires a key at least as long as the original message. A second problem is that only one message can be sent with a certain key, knowledge of two message-tag pairs may give information on the values of the function of some third message.

We can do better than this. We will first show a protocol that solves the first problem, and then one that solves the second, both come from [?].

We first define the following class:

$$H_2 = \{h : \mathcal{F}_q \to \mathcal{F}_q | h(a) = ia + j \text{ for some } i, j \in \mathcal{F}_q\}$$

here, $A = B = \mathcal{F}_q$, |A| = |B| = q, $|H| = q^2$.

Theorem 4.4 H_2 is Strongly Universal₂.

Proof. Consider $a \neq a'$, and two outputs b, b',

$$-\frac{ia+j=b}{i(a-a')=(b-b')}$$

 $\Rightarrow i = (b - b')(a - a')^{-1}$ (we are in a field: (a - a') exists and is unique) and so $j = b - ia = b - (b - b')(a - a')^{-1}a$.

These values of i and j define a unique h such that h(a) = b, h(a') = b'. We thus have that

$$\forall_{a \neq a', b, b'} |\{h : h(a) = b, h(a') = b'\}| = 1 = |H_0| / |B|^2$$

Unfortunately, the key to authenticate a message is twice as big as the message itself. Moreover, if we send very long messages it is not necessary to have probability 1/|B| of defeating the authentication. We may be happy with probability, say, $1/2^{50}$. In this case we use the following class instead:

$$H_{cut} = \{h : \mathcal{F}_{p^m} \to \mathcal{F}_{p^n} | h(a) = (ia+j)_{[last\,n\,symbols]}, \ i, j \in \mathcal{F}_{p^m} \}$$

here $A = \mathcal{F}_{p^m}, |A| = p^m$ and $B = \mathcal{F}_{p^n}, |B| = p$

Theorem 4.5 H_{cut} is Strongly Universal₂.

Proof. We leave the proof to the reader.

4.1 Multiple Messages

Using the above method, if an adversary sees two message-tag pairs, he may be able to determine more such pairs (by solving linear equations). One way around the problem is to use *Strongly Universal*_n functions, so that we can send n-1 messages. But there is a more elegant way: Let F be a *Strongly Universal*₂ set of functions from A to B. To each message in Mthat we send, we append an unique number i between 1 and n. The sender (*Alice*) randomly chooses a $f \in F$ and randomly chooses n, $\lg |B|$ sized, one-time pads $b_1, b_2, ..., b_n$. She secretly shares these values $(f, b_1, b_2, ..., b_n)$ with the receiver (*Bob*). To create a tag t_i for message i || m (a message with i appended in front of it), *Alice* computes $f(i||m) \oplus b_i$. When *Bob* receives a message i || m with a tag t_i , he accepts it iff $t_i \oplus b_i = f(i||m)$.

Now the difference with before is that an adversary never sees a pair of message-tag; the tags he sees are always encrypted with a one-time-pad...

Theorem 4.6 In the context of the above protocol, an adversary knowing only the set F and n pairs $(m_1, t_1), (m_2, t_2), ..., (m_n, t_n), m_i \neq m_j$ for $i \neq j$, cannot create a tag t'_i for a different message m'_i (containing i as a prefix) with probability of success greater than 1/|B|

Proof. The proof is left to the reader.

Theorem 4.7 In the context of the above protocol, an adversary knowing only the set F and n pairs $(m_1, t_1), (m_2, t_2), ..., (m_n, t_n), m_i \neq m_j$ for $i \neq j$, cannot create a set of n valid message-tag pairs $(m'_1, t'_1), (m'_2, t'_2), ..., (m'_n, t'_n),$ $m'_i \neq m'_j$ for $i \neq j$ (and each m'_i containing i as a prefix) with probability of success greater than $1/|B|^k$ if k of the n pairs are distinct from the originals.

Proof. The proof is left to the reader.

This stronger theorem works only because we appended the index i of each message in front of each m_i . Otherwise, if two messages m_i and m_j were identical the probability of substituting two message-tag pairs $(m_i, t_i), (m_j, t_j)$ by a different $(m'_i, t'_i), (m'_j, t'_j)$ for $m'_i = m'_j$ is at least 1/|B| by setting $t'_j = t'_i \oplus t_i \oplus t_j$. This follows from the fact that if t'_i happens to be correct, so will t'_j .

5 Identification Schemes

An identification scheme allows Alice to prove knowledge of a common secret key k in such a way that Bob may verify k if he already knows it, but will fail with high probability to learn k if he does not already know it. This is typically used for password or PIN verification. In this first section we consider simple one-time identification schemes and show their (in)security.

Let $k = k_1 k_2 \dots k_t$ be the binary representation of k.

5.1 PIN model

Let $\mathcal{K} = \{0, 1\}^t$. Alice reveals k to Bob who accepts if k is valid.

Theorem 5.1 This system has no security whatsoever. If Bob does not know k he learns it from Alice and then can use it at will.

5.2 broken PIN model

Let $\mathcal{K} = \{0, 1\}^t$. *Alice* reveals $k_1 \dots k_{t/2}$ to *Bob* who accepts if they are valid. Bob reveals $k_{t/2+1} \dots k_t$ to *Alice* who accepts if they are valid.

Theorem 5.2 This system has no security whatsoever. If Bob does not know k he learns $k_1...k_{t/2}$ from Alice and then can use them at will as Alice.

5.3 interactive PIN model

Let $\mathcal{K} = \{0, 1\}^t$. **for** i := 1 **to** t/2 *Alice* reveals k_i to *Bob* who accepts if it is valid. Bob reveals $k_{t/2+i}$ to *Alice* who accepts if it is valid. If an invalid bit is found then *Alice* or *Bob* aborts.

Theorem 5.3 If Bob does not know k he will learn more than $\ell \leq t$ bits from Alice with probability only $2^{-\ell}$.

5.4 hybrid PIN model

Let $\mathcal{K} = \{0, 1\}^t$.

Bob picks a random subset S of indices such that |S| = t/2 and announces it to Alice.

Alice reveals k_S to Bob who accepts if it is valid.

Bob reveals $k_{\bar{S}}$ to *Alice* who accepts if it is valid.

If an invalid bit is found then *Alice* or *Bob* aborts and should report her (his) key stolen.

Theorem 5.4 If Bob does not know k he may learn t/2 bits from Alice but will be able to answer a challenge issued by a third party Bill with probability roughly $2^{-t/4}$.