
Computer Science 308-547A

Cryptography and Data Security

Claude Crépeau

These notes are, largely, transcriptions by Anton Stiglic of class notes
from the former course Cryptography and Data Security (308-647A) that
was given by prof. Claude Crépeau at McGill University during the autumn
of 1998-1999. These notes are updated and revised by Claude Crépeau.

2

3 Introduction

3.1 Crypto system

Definition 3.1 Let P denote a finite set of messages (also called plaintexts),
C a finite set of ciphered texts and K a finite set of keys.
For each k ∈ K, we associate an encryption function ek : P → C and a
decryption function dk : C → P such that dk(ek(x)) = x, for all x ∈ P. The
set of ek’s will be noted by E and D will designate the set of dk’s.
(P, C,K, E ,D) defines a cryptosystem.

P CK

encryption

decryption

3.2 Classic simple cryptosystems

Most of the following cryptosystems will be defined over Z26, so to correspond
with the english alphabet of 26 symbols, but they can be generalized to Zm.

21

3.2.1 Shift cipher

Let P = C = K = Z26.
For 0 ≤ k ≤ 25 and x, y ∈ Z26 define

ek(x) = x + k mod 26

and
dk(y) = y − k mod 26

For the particular case where k = 3, the scheme is called the Caesar Cipher.

3.2.2 Substitution cipher

Let P = C = Z26.
K = {π|π is a permutation over the symbols 0, 1, . . . , 25 of Z26}
For π ∈ K and x, y ∈ Z26 define

eπ(x) = π(x)

and
dπ(y) = π−1(y)

Note that the shift cipher is a special case of the substitution cipher in which
only 26 of the possible 26! permutations are used.

3.2.3 Affine cipher

Let P = C = Z26,
K = {(a, b) ∈ Z26 × Z26 | gcd(a, 26) = 1}.
For K = (a, b) ∈ K and x, y ∈ Z26 define

eK(x) = ax + b mod 26

and
dK(y) = a−1(y − b) mod 26

The functions used are called affine functions, thus the name of the cryp-
tosystem. Note that the affine cipher is a special case of the substitution
cipher in which only 26∗12 (26 values of b and 12 values of a) of the possible
26! permutations are used. Notice that if a = 1, we have the shift cipher.

22

In the substitution cipher, once a key is chosen, each alphabetic character
is mapped to a unique alphabetic character. These are called monoalphabetic
ciphers. These ciphers are vulnerable to attacks in which we can use the
frequency of certain letters of the language in use. In the next cipher we
present the well known Vigenère cipher, which is a polyalphabetic cipher.

3.2.4 Vigenère Cipher

Let P = C = K = (Z26)
m, for some fixed m ∈ Z26.

For K = (k1, k2, . . . , km) define

eK(x1, x2, . . . , xm) = (x1 + k1, x2 + k2, . . . , xm + km)

and
dK(y1, y2, . . . , ym) = (y1 − k1, y2 − k2, . . . , ym − km).

All operations are performed in Z26.

3.2.5 Vernam’s One-time pad

Let n ≥ 1 and
let P = C = K = (Z2)

n.
For K ∈ (Z2)

n, define

eK(x) = (x1 + K1, . . . , xn + Kn) mod 2

and
dK(y) = (y1 + K1, . . . , yn + Kn) mod 2.

The famous one-time pad has unconditional perfect secrecy. If, when using
the Vigenère cipher, we use a new random key for each encryption then we
have perfect secrecy. This can be viewed as a generalization of the One-time
pad from a binary to an arbitrary alphabet .

3.2.6 Hill cipher

Let m be a fixed integer and
let P = C = (Z26)

m, K = {m×m invertible over Z26}.
For K ∈ K, define

eK(x) = x ·K

23

and
dK(y) = y ·K−1

Note that a permutation cipher is a special case of the Hill cipher in which
only m! (permutation matrices) of all the possible invertible m×m matrices
are used. Such a cipher is permuting blocks of m letters in a fixed reversible
way.

3.3 Cryptanalysis: classes of attacks

There are 4 basic classes of attacks on a cryptosystem. In every case, the
encryption-decryption scheme is known to everyone and an attacker Oscar is
interested in recovering the plaintext corresponding to a specific ciphertext,
or even more drastically, deduce the decryption key of the scheme in use.
The four classes of attacks are presented in the following table:

Class description

ciphertext-only Oscar tries to deduce the plaintext or decryption
key using only the ciphertext.

known plaintext Oscar has access to a series of ciphertext-plaintext
pairs.

chosen plaintext Oscar is given the ciphertexts corresponding
to the plaintexts of his choice.

chosen ciphertext Oscar is given the plaintexts corresponding
to the ciphertexts of his choice.

24

4 Authentication Codes

A message authentication code (MAC) is essentially a scheme where Alice
may append a tag (a MAC) to a message in such a way that Bob may verify
the tag so as to convince himself that Alice was in fact the one that sent the
message.

M TK

authentication

verification
In this section, we present an authentication code that is unconditionally

secure. The main results in this section is from [?].
Formally, an Authentication Code is defined as follows:

Definition 4.1 Let M be a finite set of messages and T a finite set of
authentication tags such that for each k ∈ K, there is an authentication
algorithm autk and a corresponding verification algorithm verk such that
autk : M → T and verk : M × T → {true, false} are polynomial-time
computable functions and

verk(m, t) =

{

true : if t = autk(x)
false : if t 6= autk(x)

The security of an authentication code is defined in terms of probability
for an adversary to predict a proper tag t corresponding to a message m

25

he has never seen authenticated before. In the rest of this section we build
authentication codes that are based on the notion of Strongly Universal2 hash
functions.

Definition 4.2 (Strongly Universal2) Let H is a set of hash functions from
set A to B.
H is Strongly Universal2 if for all a1, a2, distinct elements of A, and all b1, b2,
elements (not necessarily distinct) of B, we have

|{h ∈ H : h(a1) = b1, h(a2) = b2}| = |H|/|B|2

Remark: An equivalent definition is the following, H is Strongly Universal2
if for any h picked randomly (uniformly) from H we have that

1. ∀a∈A,b∈B Pr[h(a) = b] = 1/|B|

2. ∀a1,6=a2∈A,b1,b2∈BPr[h(a1) = b1, h(a2) = b2] = 1/|B|2

3. ∀a1,6=a2∈A,b1,b2∈BPr[h(a2) = b2|h(a1) = b1] = 1/|B|

We need 1 and 3 for perfect authentication.

The definition can be generalized

Definition 4.3 (Strongly Universaln) Let H is a set of hash functions from
set A to B. H is Strongly Universaln if for all a1, a2, ..., an, distinct elements
of A, and all b1, b2, ..., bn, elements (not necessarily distinct) of B, we have

|{h ∈ H : h(a1) = b1, ..., h(an) = bn}| = |H|/|B|n

Remark: If H is Strongly Universaln then it is Strongly Universaln−1

Example 4.1 Let A = B be a finite field. Let H be the class of polynomials
of degree less than n. H is Strongly Universaln since given any n distinct ele-
ments of A and corresponding elements of B, there is exactly one polynomial
of degree less than n which interpolates through the designated pairs.

We can create an authentication system that is unbreakable with cer-
tainty p. To do this, we simply choose T such that |T | ≥ 1/p and F
to be a Strongly Universal2 class of hash functions from M to T . Some-
one who sees m ∈ M and t = f(m) knows only that f ∈ H ′ where

26

H ′ = {g ∈ H | g(m) = t}, so then, by definition of Strongly Universal2 ,
guessing a correct function that maps an m′ 6= m ∈ M happens with prob-
ability ≤ p since a fraction 1/|T | of all the functions from H ′ agree with
g(m′) = t′.

The problem with this protocol is that all know Strongly Universal2 sets
are rather large (see [?] for such sets), and specifying a certain function from
these sets requires a key at least as long as the original message. A second
problem is that only one message can be sent with a certain key, knowledge
of two message-tag pairs may give information on the values of the function
of some third message.
We can do better than this. We will first show a protocol that solves the first
problem, and then one that solves the second, both come from [?].

We first define the following class:

H2 = {h : Fq → Fq|h(a) = ia + j forsome i, j ∈ Fq}

here, A = B = Fq, |A| = |B| = q, |H| = q2.

Theorem 4.4 H2 is Strongly Universal2 .

Proof. Consider a 6= a′, and two outputs b, b′,

ia + j = b
− ia′ + j = b′

i(a− a′) = (b− b′)

⇒ i = (b− b′)(a− a′)−1 (we are in a field: (a− a′) exists and is unique)
and so j = b− ia = b− (b− b′)(a− a′)−1a.

These values of i and j define a unique h such that h(a) = b, h(a′) = b′.
We thus have that

∀a6=a′ ,b,b′|{h : h(a) = b, h(a′) = b′}| = 1 = |H0|/|B|
2

Unfortunately, the key to authenticate a message is twice as big as the
message itself. Moreover, if we send very long messages it is not necessary
to have probability 1/|B| of defeating the authentication. We may be happy
with probability, say, 1/250. In this case we use the following class instead:

Hcut = {h : Fpm → Fpn|h(a) = (ia + j)[last n symbols], i, j ∈ Fpm}

here A = Fpm, |A| = pm and B = Fpn, |B| = pn

27

Theorem 4.5 Hcut is Strongly Universal2 .

Proof. We leave the proof to the reader.

4.1 Multiple Messages

Using the above method, if an adversary sees two message-tag pairs, he may
be able to determine more such pairs (by solving linear equations). One
way around the problem is to use Strongly Universaln functions, so that we
can send n − 1 messages. But there is a more elegant way: Let F be a
Strongly Universal2 set of functions from A to B. To each message in M
that we send, we append an unique number i between 1 and n. The sender
(Alice) randomly chooses a f ∈ F and randomly chooses n, lg |B| sized,
one-time pads b1, b2, ..., bn. She secretly shares these values (f, b1, b2, ..., bn)
with the receiver (Bob). To create a tag ti for message i‖m (a message with
i appended in front of it), Alice computes f(i‖m) ⊕ bi. When Bob receives
a message i‖m with a tag ti, he accepts it iff ti ⊕ bi = f(i‖m).

Now the difference with before is that an adversary never sees a pair of
message-tag; the tags he sees are always encrypted with a one-time-pad...

Theorem 4.6 In the context of the above protocol, an adversary knowing
only the set F and n pairs (m1, t1), (m2, t2), ..., (mn, tn), mi 6= mj for i 6= j,
cannot create a tag t′i for a different message m′

i (containing i as a prefix)
with probability of success greater than 1/|B|

Proof. The proof is left to the reader.

Theorem 4.7 In the context of the above protocol, an adversary knowing
only the set F and n pairs (m1, t1), (m2, t2), ..., (mn, tn), mi 6= mj for i 6= j,
cannot create a set of n valid message-tag pairs (m′

1, t
′
1), (m

′
2, t

′
2), ..., (m

′
n, t′n),

m′
i 6= m′

j for i 6= j (and each m′
i containing i as a prefix) with probability of

success greater than 1/|B|k if k of the n pairs are distinct from the originals.

Proof. The proof is left to the reader.
This stronger theorem works only because we appended the index i of each

message in front of each mi. Otherwise, if two messages mi and mj were iden-
tical the probability of substituting two message-tag pairs (mi, ti), (mj, tj)
by a different (m′

i, t
′
i), (m

′
j, t

′
j) for m′

i = m′
j is at least 1/|B| by setting

t′j = t′i ⊕ ti ⊕ tj. This follows from the fact that if t′i happens to be cor-
rect, so will t′j.

28

5 Identification Schemes

An identification scheme allows Alice to prove knowledge of a common secret
key k in such a way that Bob may verify k if he already knows it, but will
fail with high probabiilty to learn k if he does not already know it. This
is typically used for password or PIN verification. In this first section we
consider simple one-time identification schemes and show their (in)security.

Let k = k1k2...kt be the binary representation of k.

5.1 PIN model

Let K = {0, 1}t.
Alice reveals k to Bob who accepts if k is valid.

Theorem 5.1 This system has no security whatsoever. If Bob does not know
k he learns it from Alice and then can use it at will.

5.2 broken PIN model

Let K = {0, 1}t.
Alice reveals k1...kt/2 to Bob who accepts if they are valid.
Bob reveals kt/2+1...kt to Alice who accepts if they are valid.

Theorem 5.2 This system has no security whatsoever. If Bob does not know
k he learns k1...kt/2 from Alice and then can use them at will as Alice.

5.3 interactive PIN model

Let K = {0, 1}t.
for i := 1 to t/2
Alice reveals ki to Bob who accepts if it is valid.
Bob reveals kt/2+i to Alice who accepts if it is valid.
If an invalid bit is found then Alice or Bob aborts.

Theorem 5.3 If Bob does not know k he will learn more than ` ≤ t bits
from Alice with probability only 2−`.

29

5.4 hybrid PIN model

Let K = {0, 1}t.
Bob picks a random subset S of indices such that |S| = t/2 and announces
it to Alice.
Alice reveals kS to Bob who accepts if it is valid.
Bob reveals kS̄ to Alice who accepts if it is valid.
If an invalid bit is found then Alice or Bob aborts and should report her (his)
key stolen.

Theorem 5.4 If Bob does not know k he may learn t/2 bits from Alice but
will be able to answer a challenge issued by a third party Bill with probability
roughly 2−t/4.

30

